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Abstract For the purposes of classification it is common to represent a document as a

bag of words. Such a representation consists of the individual terms making up the doc-

ument together with the number of times each term appears in the document. All

classification methods make use of the terms. It is common to also make use of the local

term frequencies at the price of some added complication in the model. Examples are the

naı̈ve Bayes multinomial model (MM), the Dirichlet compound multinomial model (DCM)

and the exponential-family approximation of the DCM (EDCM), as well as support vector

machines (SVM). Although it is usually claimed that incorporating local word frequency in

a document improves text classification performance, we here test whether such claims are

true or not. In this paper we show experimentally that simplified forms of the MM, EDCM,

and SVM models which ignore the frequency of each word in a document perform about at

the same level as MM, DCM, EDCM and SVM models which incorporate local term

frequency. We also present a new form of the naı̈ve Bayes multivariate Bernoulli model

(MBM) which is able to make use of local term frequency and show again that it offers no

significant advantage over the plain MBM. We conclude that word burstiness is so strong

that additional occurrences of a word essentially add no useful information to a classifier.

Keywords Within-document frequency � Bag-of-words � Word burstiness

1 Introduction

The intuition behind the naı̈ve Bayes multinomial model (MM), as pointed out by Lewis

(1998), is the impression that ‘‘if 1 occurrence of a word is a good clue that a document

belongs to a class, then 5 occurrences should be even more predictive.’’ An alternative
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approach is the naı̈ve Bayes multivariate Bernoulli model (MBM) in which local term

frequency is ignored. A number of comparisons between the MM and the MBM models

have appeared in the literature (Kalt 1996; McCallum and Nigam 1998; Eyheramendy

et al. 2003; Schneider 2003) and all but Kalt found an advantage for the MM model. These

results seem to support the importance of local term frequency in classification. On the

other hand one of the serious problems with the MM model that has been recognized is the

fact that repeated occurrences of the same word within a document are far from inde-

pendent (Church 1995; Lewis 1998; Rennie et al. 2003; Teevan and Karger 2003; Pavlov

et al. 2004; Schneider 2005), even though independence is an assumption of the MM

model. This phenomenon has been termed word burstiness according to which if a word

appears once in a document, it is more likely to appear again. The natural response to this

is to attempt a modification of the MM model to take such dependencies into account. This

led (Rennie et al. 2003) to introduce a log transformation of the local term frequency into

the MM model. In a different approach (Madsen et al. 2005) show that while the MM

approach does not well model word burstiness, the Dirichlet compound multinomial model

(DCM) does a good job of modeling word burstiness and of classifying documents. In an

important further development Elkan (2006) has introduced what he terms an exponential-

family approximation of the DCM (EDCM) which is a very accurate approximation to the

DCM but with important simplifications. In all three models, MM, DCM, and EDCM, the

frequency of the term within a document is an integral part of the model. The important

question is whether better modeling of within document frequencies leads to better

classification.

Our claim is that the use of local term frequency within a document actually does not, as

a rule, enhance document classification. To support this claim we will give a simplified

version of MM and EDCM that performs at the same level as MM and EDCM. As further

support for the claim, we also consider support vector machines (SVM). We use the

TF 9 IDF normalized vector representation proposed by (Rennie et al. 2003) and which

they show gives excellent results for document classification. We find that one may ignore

the TF factor and that just the IDF normalized vector produces about the same results. Our

results are based on an examination of 28 different classification problems many of which

have been previously used in studies of document classification.

To add further evidence to our assertion that local within document frequency does not

generally enhance classification, we also present a new approach to the use of local

frequency in classification. This is an elaboration of the naı̈ve Bayes multivariate Bernoulli

model (MBM) which we term a stacked MBM. In this approach each higher frequency

level of terms within a document is captured by a separate MBM. With this approach there

is no need for an assumption of independence of the multiple occurrences of a term within

a document, as is necessary with the MM approach. By this means we are able to show that

the higher level MBMs in the stacked MBM approach do capture information about the

class of a document. However, the information captured at the higher levels is not inde-

pendent of the base level or standard MBM and is unable to enhance the performance

coming from the standard MBM.

The paper is organized as follows. In Sect. 2.1 we present a brief summary of the MM,

SMM, DCM, and EDCM models as well as how we construct vectors for the SVM

approach. In Sect. 2.2 we present the MBM and the stacked MBM developed for this study.

In Sect. 3 we describe the classification problems and how the data is prepared. Section 4

describes the evaluation measures we use. In Sect. 5.1 we give results for the MM, DCM,

EDCM, and SVM approaches. In Sect. 5.2 we present our analysis of the stacked MBM

approach. Sections 6 and 7 contain the discussion and conclusions.
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2 Models

2.1 MM, SMM, DCM, EDCM, and SVM

The bag-of-words approach represents a document d by tfvdf gv2V where tfvd is the number

of times v appears in the document d. We will also be interested in the simplified approach

in which document d is represented by dvdf gv2V where

dvd ¼
1; if v 2 d
0; if v 62 d

�
ð1Þ

We assume that there are a fixed number of classes C ¼ c1; c2; . . .; cmf g. Then for a

probabilistic approach we may apply Bayes theorem to write

p cijdð Þ ¼ p djcið Þp cið Þ
p dð Þ ð2Þ

It is sufficient to estimate p djcið Þ, p(ci) and p(d) to produce an estimate of p cijdð Þ.
Generally p(ci) can be estimated based on training data with reasonable accuracy and for

some applications it is not even necessary to make such an estimate. The probability p(d) in

(2) is not dependent on any class labels and it is unnecessary to estimate it for a classi-

fication task. On the other hand the estimate of p djcið Þ is crucial. The methods MM, DCM,

and EDCM all provide an estimate for p djcið Þ in terms of the representation tfvdf gv2V for d.

We here briefly sketch these estimates and provide for MM and EDCM alternate simplified

estimates based on the dvdf gv2V representation for d.

2.1.1 Naı̈ve Bayes multinomial model (MM)

The Naı̈ve Bayes’ assumption applied to tfvdf gv2V yields the multinomial model (Mitchell

1997; Lewis 1998; McCallum and Nigam 1998). This approach assumes that the occur-

rence of a token which is an instance of a v [ V is governed by a probability that is

independent of where the token occurs throughout the documents of a particular class in

the database and estimated by the relative frequency of the token with respect to all the

other tokens appearing in documents of that class in the database. To avoid probabilities of

zero, one commonly adds a smoothing parameter e. The result is

p vjcið Þ ¼
eþ

P
d2c

i
tf

vd

e Vj j þ
P

v02V;d2c
i

tfv0d
: ð3Þ

Historically Laplace priors have been assumed (Mitchell 1997; McCallum and Nigam

1998) which corresponds to setting e = 1 for all words. However, recent research (Zhang

and Oles 2001; Madsen et al. 2005) has found a value of e = 0.01 to give improved results.

Based on this formula for the probability of a single token, the formula for a multinomial

probability may be applied to calculate p djcið Þ for a classification task.

p djcið Þ ¼ dj j!
Y
v2d

p vjcið Þtfvd

tfvd!
ð4Þ

where dj j is the length of the document, i.e., the total number of tokens in the document or

the sum of the tfvd.
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In order to obtain the simplified MM (SMM) we replace tfvd by dvd everywhere in Eqs. 3

and 4. The result is

p vjcið Þ ¼ eþ nciv

e Vj j þ
P

v02V nciv0
ð5Þ

where nciv0 is the number of documents containing the term v0 among all training docu-

ments from class ci and

p djcið Þ ¼ nd!
Y
v2d

p vjcið Þ ð6Þ

where nd is the number of unique term types in document d. We note that essentially this

simplified model was proposed and studied by (Schneider 2005) in a somewhat different

context. Ideally one would determine an optimal value of e for each classification problem.

But to keep the amount of computation manageable, in all our applications of both (3) and

(5) we use the value e = 0.01.

2.1.2 Dirichlet compound multinomial model (DCM)

For the DCM distribution the probability of a document d belonging to a class ci is

determined by a vector of parameters aci ¼ ai
v

� �
v2V

(there will be such a parameter vector

for each class ci). The resulting probability for document d is

p djci; a
cið Þ ¼ C sið Þ

C si þ dj jð Þ dj j!
Y
v2d

C tfvd þ ai
v

� �
tfvd!C ai

v

� � ð7Þ

where dj j is the length of the document and si is the sum of parameters ai
w, i.e.

si ¼
P

v2V ai
v. Given a class ci, the parameter vector aci can be estimated from a training

collection of documents Dci belonging to the class. The parameter vector aci is the max-

imum-likelihood solution which maximizes
P

d2Dci log p djci; acið Þð Þ. There exists no

closed-form solution. An iterative gradient descent optimization method can be used to

estimate the vector a by computing the gradient of the DCM log likelihood. Two bound

inequations are used with the gradient, leading to the update

anew
v ¼ aold

v

P
d2Dci W tfvd þ ai

v

� �
�W ai

v

� �
P

d2Dci W tfvd þ
P

v02V ai
v0

� �
�W

P
v02V ai

v0

� � ð8Þ

Here the function W is the digamma function. In order to avoid zero av
i values the final

solution is smoothed by adding 0.01 times the smallest nonzero av
i to all the ai

v0 values.

What we have given here is essentially taken from (Madsen et al. 2005). For further details

we refer the reader to (Minka 2003; Madsen et al. 2005).

2.1.3 Exponential-family approximation to the DCM (EDCM)

Elkan (2006) has derived a new family of distributions that is a close approximation to the

DCM distributions and yet constitutes an exponential family, unlike DCM. He has used the

EDCM distribution to obtain insights into the properties of the DCM distribution it

approximates and has presented an algorithm for EDCM maximum-likelihood training that

is many times faster than the corresponding method for the DCM distribution. Elkan
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observes that for a typical case of document classification the DCM parameters satisfy

ai
v � 1 for almost all v [ V. Since it is known that

lim
a!0

C xþ að Þ
C að Þ � C xð Þa ¼ 0 for x� 0 ð9Þ

then substituting into (7) based on the approximation suggested by (9) and using the fact

that the local frequency tfvd is an integer and C tfvdð Þ ¼ tfvd � 1ð Þ!, the EDCM distribution

is given by

p djci; b
cið Þ ¼ C sið Þ

C si þ dj jð Þ dj j!
Y
v2d

bi
v

tfvd
ð10Þ

For clarity, the parameters bci are used instead of aci in (10) for the EDCM parameters.

As for the DCM a maximum likelihood estimate for the parameter vector bci can be made

based on a set of training documents Dci belonging to the class ci. Such parameters

maximize the concave function
P

d2Dci log p djci;b
ci

� �� �
. The solution may be obtained

from setting the partial derivatives of the log-likelihood to zero yielding

bi
v ¼

ncivP
d2Dci W si þ dj jð Þ � Dcij jW sið Þ ð11Þ

where Dcij j is the total number of documents in the set Dci and nciv is the number of

documents containing the term v in the set Dci . Summing the Eq. 11 over all v yields si on

the left and the equation

si ¼
P

v2V ncivP
d2Dci W si þ dj jð Þ � Dcij jW sið Þ : ð12Þ

Since the only unknown in this equation is si, it can be solved numerically. Once si is

known, the bv
i can be directly computed from (11). As a practical matter we have found it

quite useful to first solve for the EDCM model and use the resulting bci as a starting point

in computing the aci for the DCM model.

Again we smooth the parameters bci by adding 0.01 times the smallest non-zero fitted bv
i

to all values as in the DCM model (Elkan 2006).

The EDCM is actually closely related to SMM, which can be seen by noting that

p vjcið Þ ¼ bi
v=si: ð13Þ

Thus we can rewrite the right side of (10) as

dj j!C sið Þ
nd!C si þ dj jð Þ

Y
v2d

si

tfvd

" #
nd!
Y
v2d

p vjcið Þ: ð14Þ

Note that the EDCM probability is identical to the SMM probability given in (6) except for

the bracketed coefficient which varies with the class only through si. We believe it is the

unusual case where such an si provides information crucial to classification and find

empirical support for this in the results that we report comparing EDCM and SMM.

2.1.4 Support vector machine (SVM)

In their classification study Rennie et al. (2003) reported their best results using a support

vector machine applied to data prepared as vectors of TF 9 IDF term weights (Salton
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1989; Baeza-Yates and Ribeiro-Neto 1999; Witten et al. 1999). The TF or local weight is

produced as a log transformation of the local frequency

TFvd ¼ log 1þ tfvdð Þ ð15Þ

which dampens the effect of local counts. The IDF or global weight is produced by the

relatively standard

IDFv ¼ log Dj j=nvð Þ ð16Þ

where Dj j is the total number of documents in the training set and nv is the number of

documents containing the word v in the set D. They multiply (15) and (16) in the standard

approach and then normalize the result to obtain the final representation for a document.

Thus the weight for an individual term v in a document d is

wtv ¼
TFvd � IDFvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

v02V TFv0d � IDFv0ð Þ2
q ð17Þ

and the document is represented as wtvf gv2V . We will refer to this form as the TF–IDF

SVM. We will compare the TF–IDF SVM with the result of ignoring the local frequency of

a term within a document, or equivalently setting

TFvd ¼
1; if tfvd [ 0

0; if tfvd ¼ 0

�
ð18Þ

in place of (15). The SVM that results from (18), (16), and (17) we will refer to as the IDF

SVM. For most of our SVM experiments we have used SVMlight with linear kernel and

default parameters. Only for the TREC data have we used a new method based on a linear

kernel and proposed by Joachims (2006) as of suitable time complexity for large data sets.

2.2 MBM and stacked MBM

Here Eq. (2) retains its importance and our goal is to define the quantity p djcið Þ. For MBM

this is based on the simple document representation d ¼ dvdf gv2V . However, for the

stacked approach the bag of words representation d ¼ tfvdf gv2V is used.

2.2.1 Multivariate Bernoulli model (MBM)

Here it is assumed that each term v [ V occurs in a document, or does not occur, with a

probability dependent only on that document’s class and independent of the occurrence of

any other term. Our approach is to define

nciv ¼
X

d2Dci
dvd ð19Þ

and

nv ¼
X

d2D
dvd: ð20Þ

Further set

fi ¼ Dcij j= Dj j ð21Þ

Then we set
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pb vjcið Þ ¼ efinv þ nciv

efi Dj j þ Dcij j ð22Þ

where Dcij j denotes the number of documents in class ci and e is a small positive smoothing

factor which throughout this work we take to be 0.01. We use the subscript b here to

distinguish the probabilities discussed here from those of the MM. The multivariate

Bernoulli document probability has a factor for each term

pb djcið Þ ¼
Y
v2V

pb vjcið Þdvd 1� pb vjcið Þð Þ1�dvd ð23Þ

2.2.2 Stacked MBM (StMBM)

We introduce a new model which we term a stacked MBM model based on the equations

p tfv� kjcið Þ ¼ p tfv� 1jcið Þp tfv� 2jtfv� 1 ^ cið Þ. . .p tfv� kjtfv� k � 1 ^ cið Þ ð24Þ

p tfv ¼ kjcið Þ ¼ p tfv� 1jcið Þp tfv� 2jtfv� 1 ^ cið Þ. . .p tfv� kjtfv� k � 1 ^ cið Þ
1� p tfv� k þ 1jtfv� k ^ cið Þ½ �

ð25Þ

In order to apply this model we choose a local frequency limit, f_limit, beyond which

we do not consider the counts to go. Then if a term occurs at a local frequency greater than

this limit we set it to f_limit for purposes of our computations. Then for any term v and for

any k; 0� k� f limit we define the counts

nciv kð Þ ¼ d 2 Dci jtfvd � kf gj j ð26Þ

and

nv kð Þ ¼ d 2 Djtfvd � kf gj j: ð27Þ

Then generalizing (22) and making use of fi defined in (21), the elemental probabilities for

1� k� f limit are given by

p tfv� kjtfv� k � 1 ^ cið Þ ¼ efinv kð Þ þ nciv kð Þ
efinv k � 1ð Þ þ nciv k � 1ð Þ : ð28Þ

Now define the probabilities

qvd ¼
p tfv� f limitjcið Þ; tfvd � f limit
p tfv ¼ tfvdjcið Þ; tfvd\f limit

�
: ð29Þ

Then we may compute the probability of a document

ps djcið Þ ¼
Y
v2V

qvd ð30Þ

where we use the subscript s to denote that this is a stacked MBM estimate.

3 Data sources and preparation

The databases we studied are:

MED[Heart]: MEDLINE� (McEntyre and Lipman 2001) documents that contained any

MeSH� terms (Section 2004) that are below or equal to the term ‘‘Heart’’ in the MeSH
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hierarchy. This set consists of 240,000 MEDLINE documents and MeSH terms are

removed from the document representation. We will refer to this set as MED[Heart]. We

considered the ten most frequent MeSH terms in the MED[Heart] set: human, animal,

male, myocardium, female, heart, middle aged, adult, heart ventricles and myocardium/

metabolism. We studied the binary classifications for each of these MeSH terms in the

MED[Heart] set.

REBASE: The version of REBASE (a restriction enzyme database) we study here

consists of 3,048 documents comprising titles and abstracts mostly taken from the research

literature. These documents are all contained in MEDLINE. We have applied naı̈ve Bayes

(MBM) to learn the difference between REBASE and the remainder of MEDLINE and

extracted the top scoring 100,000 documents from MEDLINE that lie outside of REBASE.

We refer to this set as NREBASE. These are the 100,000 documents which are perhaps

most likely to be confused with REBASE documents. We study the distinction between

REBASE and NREBASE.

MDR dataset: The MDR dataset contains information from CDRHs (Center for Device

and Radiological Health) device experience reports on devices which may have mal-

functioned or caused a death or serious injury. The reports were received under both the

mandatory Medical Device Reporting Program (MDR) from 1984 to 1996, and the vol-

untary reports up to June 1993. The database currently contains 620,119 reports that are

divided into three disjoint classes: malfunction, death and serious injury. We studied the

binary classifications for each of the three classes in the MDR set. The MDR set was used

by (Eyheramendy et al. 2003) to study naı̈ve Bayes models.

20 Newsgroups: A collection of messages, from 20 different newsgroups, with one

thousand messages from each newsgroup. The data set has a vocabulary of 64,766 words.

This data set has been studied by (McCallum and Nigam 1998; Eyheramendy et al. 2003;

Rennie et al. 2003; Madsen et al. 2005; Schneider 2005).

Industry Sector: The Industry Sector data set contains 9,555 documents distributed in

104 classes. The data set has a vocabulary of 55,056 words. This data set has been studied

by (McCallum and Nigam 1998; Rennie et al. 2003; Madsen et al. 2005).

WebKB: This data set (Craven et al. 1998) contains web pages gathered from university

computer science departments. These pages are divided into seven categories: student,

faculty, staff, course, project, department and other. We study the assignment of each of

these category terms to documents as an independent binary decision. We do not exclude

stop words to follow the suggestion of McCallum and Nigam (1998). This data set has been

studied by McCallum and Nigam (1998) and Schneider (2005).

Reuters 21578: The ModApte train/test split of the Reuters 21578 Distribution 1.0 data

set consists of 12,902 Reuters newswire articles in 135 overlapping topic categories.

Following several other studies, we build binary classifiers for each of the ten most pop-

ulous classes.

Because the above databases tend to have relatively short documents, we also studied

the full-text document corpus that was assembled for the TREC 2007 Genomics Track:

2007 TREC Genomics data: The documents in this corpus came from the Highwire

Press (www.highwire.org) electronic distribution of journals and there were slightly over

162,000 documents in the corpus from 49 genomics-related journals. Here we only con-

sidered journal articles that also appeared in the MEDLINE database and this set consists

of 160,248 articles. We will refer to this set as TREC_GEN. We considered the 100 most

frequent MeSH terms in the TREC_GEN set. The frequency of the MeSH terms varied

from a high of 85,222 for the MeSH term ‘‘Animal’’ to a low of 3,565 for the MeSH term
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‘‘Cattle’’. We studied the binary classification problem corresponding to each of these 100

MeSH terms in the TREC_GEN set.

We processed the text of MED[Heart], REBASE, MDR, Reuters 21578, and

TREC_GEN as follows:

All alphabetic characters are lowercased.

No stemming is done.

All non-alphanumeric characters are replaced by blanks.

All single nonstop terms and all adjacent pairs of nonstop terms without punctuation

between are extracted from all documents to represent the initial V. There are two

exceptions here: (1) for Reuters we only used single words and not pairs in order that our

results might be more comparable to results reported by others (McCallum and Nigam

1998); (2) for TREC_GEN we processed the text with word pairs and singles, marked as

TREC_GEN (D) and we also processed the text with just single words as features,

marked as TREC_GEN (S).

For the Industry Sector, 20 Newsgroup and WebKB data, we used the Rainbow toolbox

(McCallum 1996) to extract terms. The reason we used the Rainbow toolbox to extract the

features is that we might be able to compare our results more fairly with the previously

published results (McCallum and Nigam 1998; Rennie et al. 2003; Madsen et al. 2005),

etc. Table 1 shows the document length characteristics of the databases we studied.

4 Evaluation

We use two different measures of performance. For the multi-class classification we use the

accuracy which we compute as the fraction of all test cases that are correctly classified. This

is the measure that we have most commonly seen applied to multi-class problems in the

literature. We apply this measure for results on WebKB, Industry Sector and 20 Newsgroups.

For binary classification problems, all our methods attempt to rank the documents in

what we might call the c? class above the documents we might call the c- class. In this

setting it is common and convenient to score the results as a precision-recall break-even

point (BEP). Using BEP, the performance of the models is compared on the MeSH,

REBASE, MDR, Reuters, and TREC_GEN collections. Both micro- and macro-averaged

versions of BEP are given.

In all cases we train the algorithms on a training set and test on a held out test set. In the

cases of data from MEDLINE and MDR the whole set of labeled data is randomly divided

Table 1 Document length is
computed as the number of white
space separated tokens in a doc-
ument. Average, standard
deviation, minimum and maxi-
mum document lengths over each
database we studied are given
here

Average Standard deviation Min Max

MED[Heart] 209.5 106.8 8 999

REBASE 206.6 79.9 33 795

MDR 42.307 38 0 403

20 Newsgroup 195.3 325.7 2 12741

Industry Sector 606.2 878.5 15 36655

WebKB 310.5 896.6 0 54580

Reuters 76.9 95.6 0 937

TREC_GEN 6066.85 2608.69 11 48697
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into three parts and training takes place on two of these and testing on the third. In the case

of Reuters 21578 there is a train/test division already defined for the data and we use it. For

WebKB we hold out the data coming from Cornell for testing. For 20 Newsgroup, we split

the data into 80/20 fractions for training and testing. For Industry Sector, it is split into

halves for training and testing.

5 Results

5.1 MM, SMM, DCM, EDCM, and SVM

This section provides empirical evidence that incorporating word frequency in a document

in most cases does not improve performance in the classification tasks.

The strongest trend one sees in examining the results of Fig. 1 is that the SMM results

are almost identical to the DCM and EDCM results. The only exceptions are the WebKB

data where DCM and EDCM slightly outperform SMM and the Industry Sector data where

SMM is ahead of DCM and EDCM. The fact that DCM and EDCM produce almost

identical results is expected based on the results of Elkan (2006) showing that these two

approaches produce almost the same probabilities. Here we also see that SMM and MM are

relatively close in performance most of the time with SMM appearing to have a small

advantage. If we note that the data we report here are based on 27 individual classification

problems (MeSH Terms 10, Reuters 10, MDR 3, REBASE 1, 20 Newsgroups 1, Industry
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Fig. 1 A comparison of performance coming from the MM, SMM, DCM, EDCM, TF–IDF SVM, and IDF
SVM models over the different binary and multiclass classification tasks we studied, except TREC_GEN
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Sector 1, WebKB 1) and tally which classifier performs best on each problem we see (data

not shown) that SMM wins 20 times, MM 6 times, and there is 1 tie. By the sign test this is

statistically significant in favor of SMM. This observation that local frequency does not

benefit in the MM model was also made by (Schneider 2005). Also in Fig. 1 one sees that

TF–IDF SVM and IDF SVM appear to be very close in performance with TF–IDF SVM

having a small advantage. Again if we consider the 27 individual classification tasks and

tally the winners we see that TF–IDF SVM wins 12 times, IDF SVM wins 6 times, and

there are 9 ties. This is not statistically significant by the sign test.

We have treated TREC_GEN as a separate problem and the results are given in Fig. 2.

We treat TREC_GEN as a separate case because it consists of much longer documents than

the other data sets and it may exhibit different characteristics. One of the challenges here is

that the postings data for TREC_GEN involves over 25 million features and requires about

4 gigabytes of space. Each iteration over the data therefore requires substantial time. MM,

SMM, and EDCM are simple and fast to compute and present no problem. DCM requires

substantially more time, but is doable. For SVM we succeeded by using the improved

method for linear kernals proposed in (Joachims 2006). In Fig. 2 results for MM and SMM

show a slight advantage for MM over SMM, while for SVMs, TF–IDF SVM shows a small

advantage over IDF SVM. Note that these advantages are slightly amplified for TREC_-

GEN (S) as opposed to TREC_GEN (D). However, TREC_GEN (D) IDF SVM is, on the

scale of these differences, much better than TREC_GEN (S) TF–IDF SVM.

The foregoing results are produced using the full set of features contained in V. This is

the approach used by (Madsen et al. 2005) for the DCM, by (Elkan 2006) for the EDCM,

and by (Rennie et al. 2003) for the TF–IDF SVM. However, there is evidence to suggest

that MM performance can be improved by feature selection (McCallum and Nigam 1998).

In producing V we have already eliminated the high frequency functional words (stop

terms). Beyond that there is reasonably good agreement in the classification community

(Joachims 1997; Yang and Pedersen 1997; Craven et al. 1998; McCallum and Nigam

1998) that selecting features by their average mutual information with document class is

useful and perhaps even the best technique. We will follow this approach for the multi-

nomial model. In general the V will be taken as the terms with the m highest average

mutual information values. Optimization of the MM method will be performed by varying

m as in (McCallum and Nigam 1998). We examine 100 uniformly spaced values of m
spanning the size of V to determine the optimal value of m in what follows. This feature
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Fig. 2 A comparison of performance coming from the MM, SMM, DCM, EDCM, TF–IDF SVM, and IDF
SVM models over the TREC_GEN data set
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selection is done on held out data to determine the optimal size m for MM performance on

each classification problem. Based on this optimal m we then select the optimal V for MM

based on the whole training set for that problem. We have then used that V to compute with

both MM and SMM. We present results only for the binary classification problems as this

seems sufficient to make our argument. Figure 3 presents the results.

The data in Fig. 3 shows that in general feature selection has improved performance for

MM. Yet MM is still almost uniformly less effective than SMM. The one notable

exception is the case of TREC_GEN (S) where MM clearly outperforms SMM. Here it is

also notable that SMM on TREC_GEN (D) exceeds MM on TREC_GEN (S) by a rela-

tively much larger factor than MM on TREC_GEN (S) exceeds SMM on TREC_GEN (S).

In order to summarize the comparison of MM and SMM we present Table 2. It is

evident that SMM generally gives the superior performance. In the one case (REBASE)

where the difference favors MM and approaches practical significance, we see that the

advantage changes to SMM when optimal feature selection is used.

5.2 MBM and stacked MBM

The outstanding observation from the results of comparing MBM and StMBM, as given in

Fig. 4, is that there is almost no performance difference in the two models. If we consider

the 27 classification problems involving moderate length documents and let the average

scores represent the Industry and 20 Newsgroup problems, then StMBM wins 15 times,

MBM 5 times, and there are 7 ties. The sign test yields a p-value of 0.02 suggesting the

there is a significant difference with the edge going to the StMBM model. However, the

differences in scores are very small and unlikely to be of any practical significance. For the

TREC_GEN data we see a pattern very similar to the comparison of MM and SMM in

Fig. 3. StMBM and MBM are virtually identical in performance on (D), and both are

substantially higher than either model on (S).

In an effort to gain a better understanding of what is happening here, we looked at the

performance of just the higher level weights for local term frequencies of 2–5 coming from

the StMBM model and compared the result to a random background model. The random

scores are computed by taking the actual scores computed and shuffling them randomly

among the documents in the test set and evaluating the performance 1,000 times and taking

the average. From this same set of random scores we also estimate the 95% confidence
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Table 2 Comparison of MM and SMM for the different datasets and conditions presented in Figs. 1–3

Micro-average (%) Macro-average (%)

MM SMM MM SMM

BEP (without feature selection) MED[Heart] – 0.28 – –

REBASE 4.5 – 4.5 –

MDR – 0.11 – 0.65

Reuters – 0.12 – 0.22

TREC_GEN (D) 0.79 – 1.8 –

TREC_GEN (S) 1.64 – 2.4 –

Accuracy Industry Sector – 4.7

WebKB 2.7 –

20 Newsgroups – 0.79

BEP (optimal feature selection) MED[Heart] – 0.43 – 0.45

REBASE – 0.68 – 0.68

MDR – 0.22 – 0.15

Reuters 0.11 – – 0.41

TREC_GEN (D) – 0.19 – 0.49

TREC_GEN (S) 1.85 – 2.67 –

In each case the better performer is marked with a percent improvement over the worse performer
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limits. We found that for 21 cases out of 27 the higher order terms produced a classification

result significantly above random. However, even when the performance was over 10

percentage points above random that did not translate into an improvement of a corre-

sponding magnitude in the comparison of StMBM and MBM. For example the MeSH term

‘‘Animals’’ is classified with a BEP of 0.599 by the higher order terms while random

performance is 0.480, but the StMBM achieves a BEP of 0.900 compared with a BEP of

0.899 for MBM on the same problem. Likewise the Reuters ‘‘earn’’ class is correctly

labeled by the higher order terms with a BEP of 0.653 as opposed to a random result of

0.330. But we find StMBM performance is 0.939 while MBM achieves 0.937. Our

interpretation of these results is that there is a strong dependency between the first order

MBM weights and the higher order weights so that little is gained by adding the higher

order weights.

6 Discussion

Perhaps the first issue to consider is whether our results with MM, EDCM, and SVM are

consistent with the performance that others have reported. For MM we can compare our

accuracy of 0.77 on the Industry Sector data with a figure of 0.78 by (Madsen et al. 2005)

and 0.58 by (Rennie et al. 2003) (the latter uses no feature selection and does not optimize

smoothing). Likewise for MM on the 20 Newsgroups data we obtain an accuracy of 0.88

which is to be compared with 0.85 for (McCallum and Nigam 1998), 0.85 for (Madsen

et al. 2005), 0.86 for (Eyheramendy et al. 2003), and 0.85 for (Rennie et al. 2003). For

DCM our accuracy of 0.783 on the Industry Sector data is to be compared with 0.806 for

(Madsen et al. 2005) and our accuracy of 0.903 on the 20 Newsgroup data compares with

0.890 for (Madsen et al. 2005). Finally for the SVM we obtained an accuracy of 0.933 for

the Industry Sector data and an accuracy of 0.948 for the 20 Newsgroup data. These figures

are comparable to accuracies of 0.934 and 0.862, respectively, obtained by (Rennie et al.

2003) for a SVM. We present these comparisons as evidence that our implementations of

MM, DCM, and SVM are competitive with what others have used. Thus we believe the

explanation for our results does not lie in the implementations of the algorithms we use.

Our results suggest no benefit from using local frequency in the MM model on short to

moderate length documents. Our SMM results are generally as good as our MM results. A

natural question to ask is why then have most comparisons of MM shown better results

than those for MBM. In answer to this question one may note that MM and even SMM are

very different realizations of Naı̈ve Bayes than MBM. It is quite believable that the

differences between SMM and MBM, apart from local term frequencies, explain the

differences that have been observed and reported by (Kalt 1996; McCallum and Nigam

1998; Eyheramendy et al. 2003; Schneider 2003). Further there are more or less effective

ways to do feature selection and smoothing of probabilities in a Naı̈ve Bayes model and

what works best for MM may be different than what works best for MBM. The problem

becomes reminiscent of trying to compare apples and oranges. How can one be sure one

has equally optimized the two models to be compared? It is for this reason that we have

used the SMM to compare with MM. SMM is much closer to MM in function and the

method of optimization used is the same. We have applied this approach also to the

comparison of TF–IDF SVM versus IDF SVM. In all of these comparisons the local term

frequency is shown not to be responsible for the performance of the method because the

simplified version without the local frequency factor matches the performance of its more

complicated counterpart. This is based on consideration of performance on 27
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classification problems, both binary and multiclass (Figs. 1–3). Applying the sign test to

this data we find that SMM and IDF SVM are judged at least as good as MM, EDCM,

DCM and TF–IDF SVM, respectively. Our important conclusion is that the advantages to

using local term frequencies in these models are so small and so inconsistent over problems

as to be without practical value.

Our investigation of MM, EDCM, DCM, and SVM has not yielded results which

support the importance of local term frequency in document classification. However, this

does not exclude the possibility that someone may invent a different model using local

frequency that indeed shows that local frequency can make a substantial contribution to

document classification. The fact that DCM actually provides a very accurate model for the

behavior of local term frequencies (Madsen et al. 2005), and yet within that model such

local frequencies do not seem to benefit classification, suggests that this may be difficult to

do, but one cannot rule out the possibility on this basis alone. Because of this possibility we

have developed what we have termed a stacked version of MBM which incorporates local

term frequency and provides the possibility of multiple parameters to model the behavior

of each separate term. A comparison of the results of MBM with StMBM shows that over

the 27 problems with moderate length documents StMBM enjoys a statistically significant

advantage by the sign test. However, a comparison of results on the individual problems

shows that the differences are extremely small and again unlikely to have any practical

significance. Because the advantage seen for StMBM is so small, we decided to examine

the contribution of the higher order terms in StMBM to see if they in fact carry significant

information. The results showed that in 21 of 27 cases classification based only on higher

order terms of the StMBM are significantly above random. In many cases these higher

order terms produce classification results far above random yet when combined with the

first order MBM terms they produce almost no benefit over just the MBM. We believe this

is best explained as due to a statistical dependency between the contributions of the higher

order weights and those of the first order weights. In essence we are saying here that word

burstiness is so strong that additional occurrences of a word add little information. If this is

true it suggests that for moderate length documents no model will be able to use the local

frequencies to advantage for classification.

The data we consider is composed mostly of short to moderate length documents (see

Table 1). It is conceivable that longer documents might behave differently because there is

much more opportunity for words to be emphasized by being used many times. In order to

examine this possibility we included the TREC_GEN data set of full text scientific papers.

We did this in two ways, as the set TREC_GEN (D) where two word phrases are included

as features, and TREC_GEN (S) where only single words are used as features. While this

was computationally challenging, it allowed for a more thorough comparison of MM and

SMM on longer documents. On TREC_GEN (D) MM proved to have a slight advantage

without feature selection. On the average over 100 classification problems, MM gave an

improvement of 0.79% in the micro-averaged BEP compared with SMM. At the same time

TF–IDF SVM gave an improvement of 1.3% in micro-averaged BEP compared with IDF

SVM. However, when feature selection was applied SMM had a slight advantage over MM

(see Table 2). On the same data we found that StMBM and MBM were essentially

equivalent (Fig. 4). Thus we do not find support for the importance of local frequencies in

classification on these long documents when two word phrases are included as features.

The same computations and comparisons were made for TREC_GEN (S). With only single

words used as features, we generally find that local frequency improves performance by

a small amount. The largest of these improvements is for TF–IDF SVM over IDF

SVM where the difference of the macro-averages is 3.6%. For the same comparison the
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micro-averages differ by 1.8%. All the probabilistic models produce differences that are

less than 3% for both micro- and macro-averages. Based on these computations we would

say that one may gain a small advantage using local frequency in the (S) case, but this is

arguably so small as to be of marginal importance. Further the improvement one may see

in the (S) case by using local term frequency is much smaller than the improvement one

sees in moving to the (D) representation without local frequency and this is true in all the

models. Since we have only examined a single genre of data, however, it will be important

to study more examples involving longer documents before reaching a final conclusion.

7 Conclusions

We have examined eight different data sets involving multiple classification problems with

different characteristics and studied three different closely related model comparisons:

SMM versus MM, DCM, and EDCM; IDF SVM versus TF–IDF SVM; and MBM versus

StMBM. In all of this analysis we have failed to find evidence that there is substantial value

for text classification in using the local frequencies of features (words or two word phrases)

within documents. SMM is closely related to EDCM and its performance is almost

identical with that of DCM and EDCM and usually as good as or better than MM.

Differences between IDF SVM and TF–IDF SVM favor the use of local frequency, but are

small and of marginal importance. Differences between MBM and StMBM favor StMBM

and the use of local frequency but are so small as to be of no practical importance. These

conclusions hold true in the one case of long documents (TREC_GEN) which we

considered, but this issue requires further study for long documents.
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